

DESIGN ASSOCIATES, INC.

STOCK PLAN

B21143

STRUCTURAL

GRAVITY LOADS DESIGNED TO AF&PA NDS-2012

FLOOR

40# LIVE, 10# DEAD

ROOF

25# SNOW 15# DEAD (SHAKE/COMP)

19# DEAD (CONC. TILE)

CEILING

DECKS

20# LIVE, 10# DEAD 60# LIVE, 10# DEAD

EXITS/STAIRS

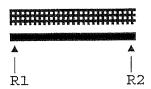
100# TOTAL LOAD

BEAM **CALCULATIONS**

(503) 225-9161 Portland, OR

Client: STOCK PLAN

Project: B21143


Location: Ul- WINDOW HDR OVER STAIRS

Date: 12-23-2009

Calculation By: L.A.W.

Comment: 4 X 10 DF #2 OK

BEAM AND LOAD DIAGRAM

Reaction R1 = 1,782.0 lbs. Reaction R2 = 1,782.0 lbs.

Total load = 3,564.0 lbs.

Dimensions: Clear span = 6.0 feet, no overhang.

No point loads.

No triangular loads.

6 lbs/lf (= 36 lbs. total).

Uniform beam weight = 6 lbs/lf (= 36 lbs. total).
Uniform loads: U1 = 588.0 lbs/lf at 0.0 feet to 6.0 feet.

Deflection limit (live load plus dead load): 1/300.

BEAM TYPE WOOD: DFL-SINGL 4X #2

COMPUTED STRESS/STRAIN DESIGN VAL. PROPERTIES REQUIRED ACTUAL

Shear (lbs)	1,782.0 F	ďV	95.0	Area (Sq.In.)	28	28*
Moment (ft-lbs)	2,673.0 F	PB	990.0	Sect.Modulus	32	38
Deflection (in)	0.24	E	1.60E6	Mom.Inertia	45	152

Actual Maximum Deflection = 0.07 inches. Maximum Deflection occurs at 3.0 feet.

Maximum Moment occurs at 3.0 feet.

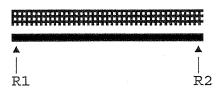
MINIMUM BEAM SIZE (W x H): 3.500" by 8.039"

MINIMUM BEAM AREA (Sq.In.): 28.14 VERIFY WITH BUILDING OFFICIAL PRIOR TO MAKING MATERIAL SUBSTITUTIONS

(503) 225-9161 Portland, OR

Client: STOCK PLAN

Project: B 21143


Location: M1- MULT JSTS OVER FOYER

Date: 12-23-2009

Calculation By: L.A.W.

Comment: (2) 2 X 12 DF #2 OK

BEAM AND LOAD DIAGRAM

Reaction R1 = 555.8 lbs. Reaction R2 = 555.8 lbs.

Total load = 1,111.5 lbs.

Dimensions: Clear span = 9.5 feet, no overhang.

No point loads.

No triangular loads.

Uniform beam weight= 67 lbs/lf (= 636.5 lbs. total).
Uniform loads: U1 = 50.0 lbs/lf at 0.0 feet to 9.5 feet.

Deflection limit (live load plus dead load): 1/360.

BEAM TYPE WOOD: DFL-SINGL 2X12 #2

COMPUTED STRESS/STRAIN DESIGN VAL. PROPERTIES REQUIRED ACTUAL

Shear (lbs)	555.8 F	V 95.0	Area (Sq.In.)	9	17
Moment (ft-lbs)	1,316.3 F	B 990.0	Sect.Modulus	16	16*
Deflection (in)	0.32	E 1.60E6	Mom.Inertia	42	45

Actual Maximum Deflection = 0.30 inches.

Maximum Deflection occurs at 4.5 feet.

Maximum Moment occurs at 4.5 feet.

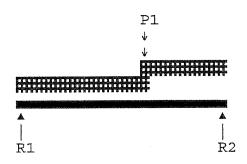
MINIMUM BEAM SIZE (W \times H): 3.000" by 5.649"

MINIMUM BEAM AREA (Sq.In.):

(503) 225-9161 Portland, OR

Client: STOCK PLAN

Project: \$21143


Location M2 - BM BTWN FOYER / LIVING

Date: 12-23-2009

Calculation By: L.A.W.

Comment: 3 1/8" X 10 1/2" 24F GLU-LAM OK

BEAM AND LOAD DIAGRAM

Reaction R1 = 3,489.0 lbs. Reaction R2 = 3,002.3 lbs.

Total load = 6,491.3 lbs.

Dimensions: Clear span = 10.5 feet, no overhang.

Point loads: P1 = 556.0 lbs. at 6.5 feet.

No triangular loads.

Uniform beam weight= 11 lbs/lf (= 110.25 lbs. total).

400.0 lbs/lf at 6.5 feet to 10.5 feet. Uniform loads: U2 = 650.0 lbs/lf at 0.0 feet to 6.5 feet.

U1 =

Deflection limit (live load plus dead load): 1/360.

BEAM TYPE LAM: GLULAM (2400 Fb)

COMPUTED STRESS/STRAIN DESIGN VAL. PROPERTIES REQUIRED ACTUAL

Shear (lbs) 3,489.0 FV 240.0 Area (Sq.In.) 22 32 2,400.0 Sect.Modulus 55 Moment (ft-lbs) 9,199.2 FB 46 1.80E6 Mom.Inertia Deflection (in) 0.35 E 285 285*

Actual Maximum Deflection = 0.35 inches. Maximum Deflection occurs at 5.0 feet.

Maximum Moment occurs at 5.5 feet.

MINIMUM BEAM SIZE (W x H): 3.125" by 10.303"

MINIMUM BEAM AREA (Sq.In.): 32.20

(503) 225-9161 Portland, OR

Client: STOCK PLAN

Project: 321143

Location: M3 - BM OVER DINING BUILT-INS

Date: 12-23-2009

Calculation By: L.A.W.

Comment: 4 X 8 DF #2 OK

BEAM AND LOAD DIAGRAM

Reaction R1 = 881.1 lbs. Reaction R2 = 881.1 lbs.

Total load = 1,762.3 lbs.

Dimensions: Clear span = 3.5 feet, no overhang.

No point loads.

No triangular loads.

Uniform beam weight= 4 lbs/lf (= 12.25 lbs. total). Uniform loads: U1 = 500.0 lbs/lf at 0.0 feet to 3.5 feet.

Deflection limit (live load plus dead load): 1/360.

BEAM TYPE WOOD: DFL-SINGL 4X #2

COMPUTED STRESS/STRAIN DESIGN VAL. PROPERTIES REQUIRED

Shear (lbs)	881.1 FV	95.0 Area (Sq.In.)	14	14*
Moment (ft-lbs)	755.3 FB	990.0 Sect.Mođulus	9	9
Deflection (in)	0.12 E	1.60E6 Mom.Inertia	9	18

Actual Maximum Deflection = 0.05 inches.

Maximum Deflection occurs at 1.5 feet.

Maximum Moment occurs at 1.5 feet.

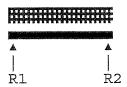
MINIMUM BEAM SIZE (W \times H): 3.500" by 3.975"

MINIMUM BEAM AREA (Sq.In.):

(503) 225-9161 Portland, OR

Client: STOCK PLAN

Project:B21143


Location: M4- BM BY 1/2 BATH / OFFICE

Date: 12-23-2009

Calculation By: L.A.W.

Comment: 4 X 12 DF #2 OK

BEAM AND LOAD DIAGRAM

Reaction R1 = 1,637.5 lbs. Reaction R2 = 1,637.5 lbs.

Total load = 3,275.0 lbs.

Dimensions: Clear span = 5.0 feet, no overhang.

No point loads.

No triangular loads.

5 lbs/lf (= 25 lbs. total). Uniform beam weight=

Uniform beam weight= $\frac{5 \text{ ibs/if}}{650.0 \text{ lbs/lf}} = \frac{25 \text{ ibs. cotal/.}}{650.0 \text{ lbs/lf}}$

Deflection limit (live load plus dead load): 1/360.

BEAM TYPE WOOD: DFL-SINGL 4X #2

COMPUTED STRESS/STRAIN DESIGN VAL. PROPERTIES REQUIRED ACTUAL

Shear (lbs) 1,637.5 FV 95.0 Area (Sq.In.) 26 26* Moment (ft-lbs) 2,046.9 FB 990.0 Sect.Modulus 25 32 1.60E6 Mom.Inertia Deflection (in) 0.17 E 34 118

Actual Maximum Deflection = 0.05 inches.

Maximum Deflection occurs at 2.5 feet.

Maximum Moment occurs at 2.5 feet.

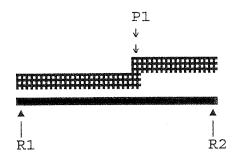
MINIMUM BEAM SIZE (W x H): 3.500" by 7.387"

MINIMUM BEAM AREA (Sq.In.):

(503) 225-9161 Portland, OR

Client: STOCK PLAN

Project: 821143


Location: M5- 10/0 O.H. GARAGE DR HDR

Date: 12-29-2009

Calculation By: L.A.W.

Comment: 5 1/8" X 10 1/2" 24F GLU-LAM OK

BEAM AND LOAD DIAGRAM

Reaction R1 = 2,780.0 lbs. Reaction R2 = 4,418.0 lbs.

Total load = 7,198.0 lbs.

Dimensions: Clear span = 10.0 feet, no overhang.

Point loads: P1 = 3,402.0 lbs. at 6.0 feet.

No triangular loads.

Uniform beam weight= 10 lbs/lf (= 100 lbs. total).

Uniform loads: $\overline{U2} = 609.0 \text{ lbs/lf}$ at 6.0 feet to 10.0 feet.

U1 = 210.0 lbs/lf at 0.0 feet to 6.0 feet.

Deflection limit (live load plus dead load): 1/360.

BEAM TYPE LAM : GLULAM (2400 Fb)

COMPUTED STRESS/STRAIN DESIGN VAL. PROPERTIES REQUIRED ACTUAL

Shear (lbs) 4,418.0 FV 240.0 Area (Sq.In.) 28 47
Moment (ft-lbs) 12,720.0 FB 2,400.0 Sect.Modulus 64 71
Deflection (in) 0.33 E 1.80E6 Mom.Inertia 326 326*

Actual Maximum Deflection = 0.33 inches.
Maximum Deflection occurs at 5.5 feet.
Maximum Moment occurs at 6.0 feet.

MINIMUM BEAM SIZE (W \times H): 5.125" by 9.136"

MINIMUM BEAM AREA (Sq.In.): 46.82
VERIFY WITH BUILDING OFFICIAL PRIOR TO MAKING MATERIAL SUBSTITUTIONS

(503) 225-9161 Portland, OR

Client: STOCK PLAN

Project: A21143


Location: M6- TYPICAL BM AT FRONT PORCH

Date: 12-23-2009

Calculation By: L.A.W.

Comment: 6 X 12 DF #2 OK

BEAM AND LOAD DIAGRAM

Reaction R1 = 1,422.1 lbs. Reaction R2 = 1,422.1 lbs.

Total load = 2,844.3 lbs.

Dimensions: Clear span = 15.5 feet, no overhang.

No point loads.

No triangular loads.

16 lbs/lf (= 240.25 lbs. total). Uniform beam weight=

Uniform beam weight= 16 10S/11 (= 240.25 10S. Cotal). Uniform loads: U1 = 168.0 lbs/lf at 0.0 feet to 15.5 feet.

Deflection limit (live load plus dead load): 1/360.

BEAM TYPE WOOD: DFL-SINGL 6X #2

COMPUTED STRESS/STRAIN DESIGN VAL. PROPERTIES REQUIRED ACTUAL

85.0 Area (Sq.In.) 50 Shear (lbs) 1,422.1 FV 25 Moment (ft-lbs) 5,505.0 FB 875.0 Sect.Modulus 75 77 354* Deflection (in) 0.52 E 1.30E6 Mom.Inertia 354

Actual Maximum Deflection = 0.52 inches.

Maximum Deflection occurs at 7.5 feet.

Maximum Moment occurs at 7.5 feet.

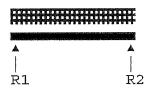
MINIMUM BEAM SIZE (W x H): 5.500" by 9.173"

MINIMUM BEAM AREA (Sq.In.): 50.45

(503) 225-9161 Portland, OR

Client: STOCK PLAN

Project: B21143


Location: M7- WINDOW HDR AT LIVING / DINING

Date: 12-23-2009

Calculation By: L.A.W.

Comment: 6 X 12 DF #2 OK

BEAM AND LOAD DIAGRAM

Reaction R1 = 3,222.0 lbs. Reaction R2 = 3,222.0 lbs.

Total load = 6,444.0 lbs.

Dimensions: Clear span = 6.0 feet, no overhang.

No point loads.

No triangular loads.

Uniform beam weight= 6 lbs/lf (= 36 lbs. total).

Uniform loads: U1 = 1,068.0 lbs/lf at 0.0 feet to 6.0 feet.

Deflection limit (live load plus dead load): 1/360.

BEAM TYPE WOOD: DFL-SINGL 6X #2

COMPUTED STRESS/STRAIN DESIGN VAL. PROPERTIES REQUIRED ACTUAL

Shear (lbs) 3,222.0 FV 85.0 Area (Sq.In.) 57 57*
Moment (ft-lbs) 4,833.0 FB 875.0 Sect.Modulus 66 98
Deflection (in) 0.20 E 1.30E6 Mom.Inertia 119 506

Actual Maximum Deflection = 0.05 inches.

Maximum Deflection occurs at 3.0 feet.

Maximum Moment occurs at 3.0 feet.

MINIMUM BEAM SIZE (W \times H): 5.500" by 10.338"

MINIMUM BEAM AREA (Sq.In.): 56.86

(503) 225-9161 Portland, OR

Client: STOCK PLAN

Project: B21143

Location: M8- BM AT REAR PATIO

Date: 12-23-2009

Calculation By: L.A.W.

Comment: 6 X 10 DF #2 OK

BEAM AND LOAD DIAGRAM

Reaction R1 = 890.0 lbs. Reaction R2 = 890.0 lbs.

Total load = 1,780.0 lbs.

Dimensions: Clear span = 10.0 feet, no overhang.

No point loads.

No triangular loads.

Uniform beam weight= 10 lbs/lf (= 100 lbs. total).

Uniform loads: U1 = 168.0 lbs/lf at 0.0 feet to 10.0 feet.

Deflection limit (live load plus dead load): 1/360.

BEAM TYPE WOOD: DFL-SINGL 6X #2

COMPUTED STRESS/STRAIN DESIGN VAL. PROPERTIES REQUIRED

890.0 FV Shear (lbs) 85.0 Area (Sq.In.) 16 32 Moment (ft-lbs) 2,225.0 FB 875.0 Sect.Modulus 31 31 0.33 E Deflection (in) 1.30E6 Mom.Inertia 92 92*

Actual Maximum Deflection = 0.33 inches.

Maximum Deflection occurs at 5.0 feet.

Maximum Moment occurs at 5.0 feet.

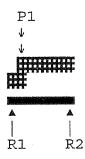
MINIMUM BEAM SIZE (W \times H): 5.500" by 5.856"

MINIMUM BEAM AREA (Sq.In.):

(503) 225-9161 Portland, OR

Client: STOCK PLAN

Project: R21143


Location: M9- MAN DR AT REAR GARAGE

Date: 12-29-2009

Calculation By: L.A.W.

Comment: 3 1/8" X 7 1/2" 24F GLU-LAM OK

BEAM AND LOAD DIAGRAM

Reaction R1 = 3,570.1 lbs. Reaction R2 = 1,468.4 lbs.

Total load = 5,038.5 lbs.

Dimensions: Clear span = 3.0 feet, no overhang.

Point loads: P1 = 3,402.0 lbs. at 0.5 feet.

No triangular loads.

Uniform beam weight= 3 lbs/lf (= 9 lbs. total).

Uniform loads: U2 = 609.0 lbs/lf at 0.5 feet to 3.0 feet.

U1 = 210.0 lbs/lf at 0.0 feet to 0.5 feet.

Deflection limit (live load plus dead load): 1/300.

ARTOOTING CONTROL CONT

BEAM TYPE LAM : GLULAM (2400 Fb)

COMPUTED STRESS/STRAIN DESIGN VAL. PROPERTIES REQUIRED ACTUAL

Shear (lbs)	3,570.1	FV	240.0 Area (Sq.In.)	22	22*
Moment (ft-lbs)	1,758.4	FΒ	2,400.0 Sect.Mođulus	9	27
Deflection (in)	0.12	E	1.80E6 Mom.Inertia	12	95

Actual Maximum Deflection = 0.02 inches.

Maximum Deflection occurs at 1.5 feet.

Maximum Moment occurs at 0.5 feet.

MINIMUM BEAM SIZE (W x H): 3.125" by 7.140"

MINIMUM BEAM AREA (Sq.In.): 22.31

Location: L1 - LOWER BEAM UNDER LIVING/DINING

Multi-Loaded Multi-Span Beam

[2009 International Building Code(2005 NDS)]

(2) 1.75 IN x 9.5 IN x 10.5 FT 1.9E Microllam - iLevel Trus Joist Section Adequate By: 3.3% Controlling Factor: Deflection

StruCalc Version 8.0.112.0

LOADING DIAGRAM

5/3/2013 10:48:32 AM

CAUTIONS

* Laminations are to be fully connected to provide uniform transfer of loads to all members

DEFLECTION	<u>s</u> <u>Ce</u>	enter	
Live Load	0.25	IN L/496	
Dead Load	0.07	in	
Total Load	0.32	IN L/389	
Live Load Defle	ection C	riteria: L/480	Total Load Deflection Criteria: L/360
PEACTIONS	Δ	R	

DEAR DATA			~~	~+~
Bearing Length	1.15	in	1.10	in
Total Load	3015	ib	2887	lk
Dead Load	648	lb	624	
Live Load	2367	lb	2263	١
REACTIONS	<u>A</u>		<u>B</u>	

BEAM DATA	<u>Ce</u>	nter			
Span Length	10.5	ft			
Unbraced Length-Top	0	ft			
Unbraced Length-Bottom	10.5	ft			
Live Load Duration Factor	1.00				
Notch Depth	0.00				

MATERIAL PROPERTIES

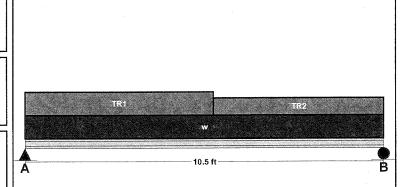
1.9E Microllam - iLevel Trus Joist

	Base	Values	<u>Adjı</u>	usted
Bending Stress:	Fb =	2600 psi	Fb' =	2684 psi
	Cd=1.00	CF=1.03		
Shear Stress:	Fv=	285 psi	Fv' =	285 psi
	Cd=1.00)		
Modulus of Elasticity:	E =	1900 ksi	E' =	1900 ksi
Comp. [⊥] to Grain:	Fc - ⊥ =	750 psi	Fc - 上' =	750 psi

Controlling Moment:

7764 ft-lb 5.14 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2


Controlling Shear:

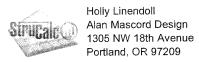
2585 lb

At a distance d from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Area (Shear): 13.6 i Moment of Inertia (deflection): 242.06 i Moment: 7764 i Shear: 2585	ft-lb 11775 ft-lb
--	-------------------

UNIFORM LOADS	<u>C</u>	enter
Uniform Live Load	310	plf
Uniform Dead Load	78	plf
Beam Self Weight	10	plf
Total Uniform Load	398	plf


TRAPEZOIDAL L	OADS - CEN	TER SPAN
Load Number	<u>One</u>	<u>Two</u>
Left Live Load	150 plf	110 plf
Left Dead Load	37 plf	28 plf
Right Live Load	150 plf	110 plf
Right Dead Load	37 plf	28 plf
Load Start	0 ft	5.5 ft
Load End	5.5 ft	10.5 ft
Load Length	5.5 ft	5 ft

Location: L2 - LOWER BEAM UNDER KITCHEN/OFFICE

Multi-Loaded Multi-Span Beam

[2009 International Building Code(2005 NDS)]

(2) 1.75 IN x 11.875 IN x 10.0 FT 1.9E Microllam - iLevel Trus Joist Section Adequate By: 9.7% Controlling Factor: Deflection

StruCalc Version 8.0.112.0

5/3/2013 10:48:32 AM

CAUTIONS

* Laminations are to be fully connected to provide uniform transfer of loads to all members

carrinatione ar	0 10 00 10	,	-	sa to provide amount transfer of roads to t
DEFLECTIONS	Cent	er		
Live Load	0.22 IN	L/538		
Dead Load	0.08 in			
Total Load	0.30 IN	L/395		
Live Load Defle	ction Crite	ria: L/48	30	Total Load Deflection Criteria: L/360
REACTIONS	А	<u>B</u>		
Live Load	4600 lb	4600	lb	
Dead Load	1665 lb	1665	lb	
Total Load	6265 lb	6265	lb	
Bearing Length	2.39 ir	2.39	in	
BEAM DATA		Cent	er	
Span Length		10 f	t	
Unbraced Lengt	h-Top	0 f	t	
Unbraced Lengt	h-Bottom	10 f	t	
Live Load Durat	ion Facto	r 1.00		
Notch Depth		0.00		

MATERIAL PROPERTIES

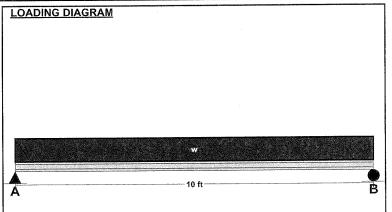
1.9E Microllam - iLevel Trus Joist

	Base	Values	<u>Adj</u>	usted
Bending Stress:	.Fb =	2600 psi	Fb' =	2604 psi
	Cd=1.00	0 CF=1.00		
Shear Stress:	Fv =	285 psi	Fv' =	285 psi
·	Cd=1.0	0		
Modulus of Elasticity:	E =	1900 ksi	E' =	1900 ksi
Comp. [⊥] to Grain:	Fc - ⊥ =	750 psi	Fc - 🕂 =	750 psi

Controlling Moment:

15662 ft-lb

5.0 Ft from left support of span 2 (Center Span)


Created by combining all dead loads and live loads on span(s) 2

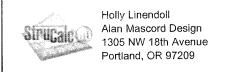
Controlling Shear: -5137 lb

At a distance d from right support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Reg'd	Provided
Section Modulus:	72.18 in3	82.26 in3
Area (Shear):	27.04 in2	41.56 in2
Moment of Inertia (deflection):	445.07 in4	488.41 in4
Moment:	15662 ft-lb	17848 ft-lb
Shear:	-5137 lb	7897 lb

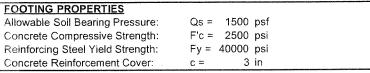
UNIFORM LOADS	<u>C</u>	enter	
Uniform Live Load	920	plf	
Uniform Dead Load	320	plf	
Beam Self Weight	13	plf	
Total Uniform Load	1253	plf	


Location: FT1 - UNDER L2

Footing

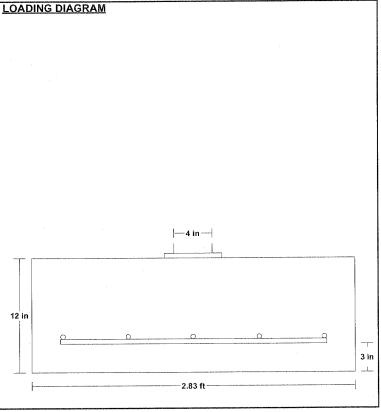
[2009 International Building Code(2005 NDS)] Footing Size: 2.83 FT x 2.83 FT x 12.00 IN

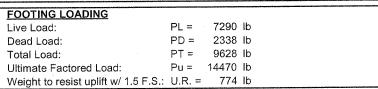
Reinforcement: #4 Bars @ 6.00 IN. O.C. E/W / (5) min.


Section Footing Design Adequate

StruCalc Version 8.0.112.0

5/3/2013 10:48:32 AM


Γ	FOOTING SIZE	***************************************			
	Width:	W =	2.83	ft	
١	Length:	L =	2.83	ft	
l	Depth:	Depth =	12	in	
	Effective Depth to Top Layer of Steel:	d =	8.25	in	


COLUMN AND BASEPLATE SIZE	
Column Type:	Steel
Column Width:	m = 4 in
Column Depth:	n = 4 in
Baseplate Width:	bsw = 6 in
Baseplate Length:	bsl = 6 in

FOOTING CALCULATIONS

				ı
Bearing Calculations:				
Ultimate Bearing Pressure:	Qu =	1202	psf	
Effective Allowable Soil Bearing Pressure:	Qe =	1350	psf	
Required Footing Area:	Areq =	7.13	sf	ĺ
Area Provided:	A =	8.01	sf	
Baseplate Bearing:				ĺ
Bearing Required:	Bear =	14470	lb	
Allowable Bearing:	Bear-A =	99450	lb	
Beam Shear Calculations (One Way Shear):				
Beam Shear:	Vu1 =	2654	lb	
Allowable Beam Shear:	Vc1 =	21013	lb	<u> </u>
Punching Shear Calculations (Two Way Shear):				
Critical Perimeter:	Bo =	53	in	
Punching Shear:	Vu2 =	12267	lb	
Allowable Punching Shear (ACI 11-35):	vc2-a =	98381	lb	١
Allowable Punching Shear (ACI 11-36):	vc2-b =	134888	lb	ı
Allowable Punching Shear (ACI 11-37):	vc2-c =	65588	lb	١ '
Controlling Allowable Punching Shear:	vc2 =	65588	lb	
Bending Calculations:				
Factored Moment:	Mu =	44668		
Nominal Moment Strength:	Mn =	281825	in-lb	
Reinforcement Calculations:				
Concrete Compressive Block Depth:	a =	0.54		
Steel Required Based on Moment:	As(1) =	0.15		
Min. Code Req'd Reinf. Shrink./Temp. (ACI-10.5.4):	As(2) =	0.82	in2	
Controlling Reinforcing Steel:	As-reqd =		in2	
Selected Reinforcement: #4's @ 6.0) in. o.c. e/w	. ,		
Reinforcement Area Provided:	As =	0.98	in2	
Development Length Calculations:				
Development Length Required:	Ld =	15		
Development Length Supplied:	Ld-sup =	11.48	in	

Note: Plain concrete adequate for bending, therefore adequate development length not required.

Location: FT2 - UNDER L1

Footing

[2009 International Building Code(2005 NDS)] Footing Size: 2.67 FT \times 2.67 FT \times 12.00 IN

Reinforcement: #4 Bars @ 8.00 IN. O.C. E/W / (4) min.

Section Footing Design Adequate

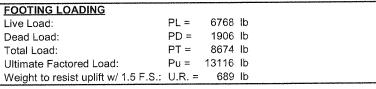
StruCalc Version 8.0.112.0

5/3/2013 10:48:32 AM

FOOTING PROPERTIES	
Allowable Soil Bearing Pressure:	Qs = 1500 psf
Concrete Compressive Strength:	F'c = 2500 psi
Reinforcing Steel Yield Strength:	Fy = 40000 psi
Concrete Reinforcement Cover:	c = 3 in

FOOTING SIZE			
Width:	W =	2.67	ft
Length:	L =	2.67	ft
Depth:	Depth =	12	in
Effective Depth to Top Layer of Steel:	d =	8.25	in

COLUMN AND BASEPLATE SIZE	
Column Type:	Steel
Column Width:	m = 4 in
Column Depth:	n = 4 in
Baseplate Width:	bsw = 6 in
Baseplate Length:	bsl = 6 in


FOOTING CALCULATIONS

Bearing Calculations:				
Ultimate Bearing Pressure:	Qu =	1217	psf	
Effective Allowable Soil Bearing Pressure:	Qe =	1350	psf	
Required Footing Area:	Areq =	6.43	sf	
Area Provided:	A =	7.13	sf	
Baseplate Bearing:				
Bearing Required:	Bear =	13116	lb	
Allowable Bearing:	Bear-A =	99450	lb	
Beam Shear Calculations (One Way Shear):				
Beam Shear:	Vu1 =	2157	lb	
Allowable Beam Shear:	Vc1 =	19825	lb	L
Punching Shear Calculations (Two Way Shear):				
Critical Perimeter:	Bo =	53	ìn	١ī
Punching Shear:	Vu2 =	10873	lb	۱ (
Allowable Punching Shear (ACI 11-35):	vc2-a =	98381	lb	-
Allowable Punching Shear (ACI 11-36):	vc2-b =	134888	lb	Ιι
Allowable Punching Shear (ACI 11-37):	vc2-c =	65588	lb	١
Controlling Allowable Punching Shear:	vc2 =	65588	lb	L
Bending Calculations:				
Factored Moment:	Mu =	37414	in-lb	
Nominal Moment Strength:	Mn =	226628	in-lb	
Reinforcement Calculations:				
Concrete Compressive Block Depth:	a =	0.46	in	
Steel Required Based on Moment:	As(1) =	0.13	in2	
Min. Code Reg'd Reinf. Shrink./Temp. (ACI-10.5.4):	. ,	0.77	in2	
Controlling Reinforcing Steel:	As-read =	0.77	in2	
ŭ ŭ) in. o.c. e/w	(4) Min.		
Reinforcement Area Provided:	As =	0.79	in2	
Development Length Calculations:	**			
Development Length Required:	Ld =	15	in	
Development Length Supplied:	Ld-sup =	10.52		
2010.0pmont conguir ouppirous				

Note: Plain concrete adequate for bending,

therefore adequate development length not required.

